

Construction Products Regulation: EU (No) 305/2011

This Declaration has been drawn-up in accordance with Commission Delegated Regulation (EU) No. 574/2014 which amends Annex III of Regulation (EU) No 305/2011.

DECLARATION OF PERFORMANCE

No. E0183

1. Unique identification code of the product-type:

Model number and Description:

SA5100-400 Soteria Analogue Addressable Class P Heat Detector with Short Circuit Isolator SA5100-400LIM Soteria Heat Detector with Short Circuit Isolator

Approved Accessories:

SA5000-200 Addressable XPERT 8 Mounting Base 45681-210 XP95 Mounting Base

Harmonised Product Type(s):

Heat Detectors – Point Detectors Short Circuit Isolators

2. Intended use/es:

Point detectors for use in fire detection and fire alarm systems installed in and around buildings Fire safety

3. Manufacturer:

Apollo Fire Detectors Ltd, 36 Brookside Road, Havant, Hampshire, PO9 1JR, United Kingdom

4. Authorised representative:

Apollo Gesellschaft für Meldetechnologie mbH Am Anger 31 33332 Gütersloh Deutschland

5. System(s) of AVCP

System 1

6 Harmonised Standard(s)

EN 54-5:2017/A1:2018 EN 54-17:2005/AC:2007

Notified Body/ies:

DBI Certification A/S (Notified Body 2531)

A HALMA COMPANY

Apollo Fire Detectors Limited

36 Brookside Road, Havant, Hampshire, PO9 1JR, UK t +44 (0)23 9249 2912 f +44 (0)23 9249 2754 e sales@apollo-fire.co.uk

www.apollo-fire.co.uk

7. Declared performance

Table 1

Detector Category (Heat Class)	Typle Application Temperature	Maximum Application Temperature°C	Minimum Static Response Temperature°C	Maximum Static Response Temperature°C
A1	25	50	54	65
A2	25	50	54	70
В	40	65	69	85
С	55	80	84	100

Table 2 - Response time limits

Rate of rise of air temperature	Cat A1				
K min-1	Lower Limit		Upper Limit		
	Min	S	Min	S	
1	29	0	40	20	
3	7	13	13	40	
5	4	9	8	20	
10	1	0	4	20	
20		30	2	20	
30		20	1	40	

Essential characteristics	Clauses in EN 54-5:2017/	Regulatory classes	Performance
	A1:2018		
Operational reliability: Position of heat sensitive element	4.2.1		The heat sensitive element(s) or at least part of it, except elements with auxiliary functions (e.g. Characteristics correctors), are a distance ≥15mm from the mounting surface of the point heat detector.
Individual alarm indication	4.2.2		Category A1R, A1S, A2R, A2S, BR, BS, CR, CS The heat detector is provided with an integral red visual indicator and can remain identified until the alarm is reset. The visual indicator is visible from a distance of 6 m directly below the point heat detector, in an ambient light intensity up to 500 lx.
Connection of ancillary devices	4.2.3		Open or short circuit failures of connection to ancillary device do not prevent the correct operation of the detector
Monitoring of detachable point heat detectors	4.2.4		A fault condition is signaled when the detector is removed from the mounting base.
Manufacturer's adjustments	4.2.5		It is not possible to change the manufacturer's settings except by special means (e.g. a special code or tool, or by breaking or remove a seal).
Onsite adjustments of response behavior	4.2.6		The detector is provided with a provision for an onsite adjustment of the response behavior and the manufacturer declares a corresponding class and adjustment setting:
		A1R, A2R, A2S, CR, CS, BR and	There are adjustable setting(s) which the manufacturer is not stating a corresponding category in accordance to this standard and are only accessible by the use of a code or special tool, and it is clearly marked on the point heat detector or in the associated data.
Software controlled detectors (when provided)	4.2.7	BS	The software documentation and the software design complies supplied by the manufacturer with the requirements of this standard.
Nominal activation			
conditions/Sensitivity: Directional dependence	4.3.1		The response time of the point detector do not unduly depend on the direction of airflow around the point heat detector.
Static response temperature	4.3.2		The response temperatures of the point heat detectors lie between the minimum and maximum static response temperatures, according to the category of the point heat detector in Table 1 above.
Response times from typical application temperature	4.3.3		The response times of the point heat detector lie between the lower and upper response time limits for the appropriate point heat detector category in Table 2 above.
Response times from 25 °C	4.3.4		The response time at 3 K min ⁻¹ exceeds 7 min 13 s and the response time at 20 K min ⁻¹ exceeds 1 min 0 s.
Response times from high ambient temperature	4.3.5		No alarm or fault signal was given at high ambient temperatures appropriate to the anticipated service temperatures. A1 3 K min ⁻¹ , Lower limit, 1 min 20 s and upper limit 13 m 40 s. 20 K min ⁻¹ , Lower limit, 12 s and upper limit 2 m 20 s.
			All others 3 K min ⁻¹ , Lower limit, 1 min 20 s and upper limit 16 m.

		20 K min ⁻¹ , Lo	ower limit, 12 s	and upper	limit 3 m 13 s.
Reproducibility	4.3.6		The response times of the point heat detectors lie betweer the lower and upper response time limits specified in Table 2 above.		
Response delay (response time):					
Additional test for suffix S point heat detectors	4.4.1	limits of respo	Suffix S point heat detector did not exceed the lower limits of response time during the transfer period or during the 10 min exposure below.		
		Point heat detector category	Condition Tempera °C		irflow emperature °C
		A1S	5 ±2	50) ±2
		A2S	5 ±2	50) ±2
		BS	20 ±2	65	5 ±2
		CS	35 ±2	80) ±2
		Rate of rise temperature		Lower Limit response time	
				Min	S
		3		9	40
		10		<u>5</u>	48 54
		20		1	27
		30		•	58
Additional test for suffix R point heat detectors	4.4.2	response req	point heat detection	category,	in table 2
	4.4.2	response req above, for hig initial tempera	uirements of its ph rates of rise of ature below the applicable to the etector	category, of tempera typical app	in table 2 ture from an blication marked on it.
	4.4.2	response req above, for hig initial tempera temperature a	uirements of its the process of the	category, of temperal typical app e category Initial cond	in table 2 ture from an blication marked on it.
	4.4.2	response req above, for hig initial tempera temperature a Point heat d category	uirements of its ph rates of rise of ature below the applicable to the	category, of tempera typical app e category Initial cond temperatur	in table 2 ture from an blication marked on it.
	4.4.2	response req above, for hig initial temperature at temperature at Point heat discategory A1R A2R BR	uirements of its ph rates of rise of ature below the applicable to the etector	category, of temperary typical apperary e category Initial conditemperature 5 ±2 5 ±2 20 ±2	in table 2 ture from an blication marked on it.
	4.4.2	response req above, for hig initial temperature at temperature at Point heat dicategory A1R A2R	uirements of its ph rates of rise of ature below the applicable to the etector	category, of temperar typical appearance category Initial conditemperatur 5 ±2 5 ±2	in table 2 ture from an blication marked on it.
Tolerance to supply voltage:		response req above, for hig initial temperature at temperature at Point heat dicategory A1R A2R BR CR	uirements of its ph rates of rise of ature below the applicable to the etector	category, of temperal typical apperactions of the category. Initial conditemperature 5 ±2 5 ±2 20 ±2 35 ±2	in table 2 ture from an blication marked on it. itioning re °C
Tolerance to supply voltage:	4.4.2	response req above, for hig initial temperature at temperature at Point heat disategory A1R A2R BR CR The point heat disategory	uirements of its ph rates of rise of ature below the applicable to the etector at detector does e supply param	category, of temperary typical apperary typical apperary initial conditemperatury 5 ± 2 5 ± 2 20 ± 2 35 ± 2 s not unduly neters and	in table 2 ture from an blication marked on it. itioning re °C
Tolerance to supply voltage: Variation in supply parameters Durability of nominal activation conditions/Sensitivity:		response req above, for hig initial temperature at temperature at Point heat d category A1R A2R BR CR The point heat d category at temperature at tempe	uirements of its ph rates of rise of ature below the applicable to the etector at detector does e supply param	category, of temperary typical apperary typical apperary initial conditemperatury 5 ± 2 5 ± 2 20 ± 2 35 ± 2 s not unduly neters and	in table 2 ture from an blication marked on it. litioning re °C
Tolerance to supply voltage: Variation in supply parameters Durability of nominal activation conditions/Sensitivity: temperature resistance	4.5	response req above, for hig initial temperature at temperature at Point heat d category A1R A2R BR CR The point heat d category at temperature at tempe	uirements of its the rates of rise of a ture below the applicable to the etector etector et detector detector detector e supply paramoer response tire.	category, of temperal typical apperactions of temperatures of	in table 2 ture from an blication marked on it. litioning re °C y depend on lie between the becified in Table 2
Tolerance to supply voltage: Variation in supply parameters Durability of nominal activation conditions/Sensitivity:		response req above, for hig initial temperature at temperature at Point heat dicategory A1R A2R BR CR The point heat variation in the lower and uppabove.	uirements of its its its rates of rise of a ture below the applicable to the etector etector esupply paramoer response time ault signal was ng temperature	category, of temperal typical apperature of temperature of tempera	in table 2 ture from an blication marked on it. litioning re °C

Dry heat (endurance)	4.6.1.2	Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 No fault signal was given on reconnection attributable to the endurance conditioning
		Point heat detector Conditioning Temperature °C C 80 ±2 For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6
Humidity resistance Damp heat, cyclic (operational)	4.6.2.1	No alarm or fault signal was given during the conditioning. Lower temperature: (25±3) °C Upper temperature: (40±2) °C Relative humidity: At lower temperature: ≥ 95 % At upper temperature: (93±3) % For resettable point heat detector Response time at 3 K min⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6
Damp heat, steady-state (endurance) Corrosion resistance	4.6.2.2	No fault signal was given on reconnection attributable to the endurance conditioning. Conditioning Temperature: 40 ±2 °C Relative Humidity: 93 ±3 % Duration: 21 days For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. Al: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6

Conditioning Imperature 25 ± 2 °C Retire production (19): 29 ± 30 °N SO2 corporation (19): 29 ± 30 °N SO2 corporation (19): 29 ± 30 °N SO2 corporation (19): 29 ± 30 °N SO3 corporation (19): 21 days For resettable point heat detector Response time at 3 K min¹ was not less than 7 min 13 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min² was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 No alarm or fault signal was given during the conditioning period or an additional 2 min. For specimen with a mass ≤ 4,75 kg: Shock pulse type: Half sine Pulse duration: 6 mis Peak acceleration: 10% (100-20M) ms-2 (M is specimen mass in kg) Number of directions: 6 Pulses per direction: 3 For resettable point heat detector Response time at 3 K min² was not less than 7 min 13 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min² was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min² was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 No alarm or fault signal was given during the conditioning period or an additional 2 min. Conditioning: Impact energy: 1.9 ± 0.1 J Hammer velocity: 1.5 ± 0.13 ms² Number of impacts: 1 For resettable point heat detector Response time at 3 K min² was not less than 7 min 13 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min² was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min² was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min² was not less than 30 s and did not exceed 30 s compared with t	Sulphur dioxide (SO ₂) corrosion (endurance)	4.6.3	No fault signal was given on reconnection attributable to the endurance conditioning.
Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6. AII: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6. Wibration resistance Shock (operational) 4.6.4.1 No alarm or fault signal was given during the conditioning period or an additional 2 min. For specimen with a mass ≤ 4,75 kg: Shock pulse type: Half sine Pulse duration: 6 ms Pask acceleration: 10 X (100-20M) ms-2 (M is specimen mass in kg) Number of directions: 6 Pulses per direction: 3 For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 30 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6. No alarm or fault signal was given during the conditioning period or an additional 2 min. Conditioning: Impact (operational) 4.6.4.2 No alarm or fault signal was given during the conditioning period or an additional 2 min. Conditioning: Impact energy: 1,9±0,1,3 ms ⁻¹ Number of impacts: 1 For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 30 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6. No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms ⁻² (=0.5 gs)			Temperature: 25 ±2 °C Relative Humidity: 93 ±3 % SO2 concentration: 25 ±5 ppm (by volume)
Signature Sig			Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time
Shock (operational) A.6.4.1 No alarm or fault signal was given during the conditioning period or an additional 2 min.			30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not
Shock (operational) A.6.4.1 No alarm or fault signal was given during the conditioning period or an additional 2 min.	Vibration resistance		
Shock pulse type: Half sine Pulse duration: 6 ms Peak acceleration: 10X (100-20M) ms-2 (M is specimen mass in Kg) Number of directions: 6 Pulses per direction: 3 For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 Impact (operational) 4.6.4.2 No alarm or fault signal was given during the conditioning period or an additional 2 min. Conditioning: Impact energy: 1,9 ±0,1 J Hammer velocity: 1,5 ±0,13 ms ⁻¹ Number of impacts: 1 For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6 A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms ⁻² (=0,5 g _n) Number of axes: 3		4.6.4.1	
Pulse duration: 6 ms Peak acceleration: 10X (100-20M) ms-2 (M is specimen mass in Kg) Number of directions: 6 Pulses per direction: 3 For resettable point heat detector Response time at 3 K min-1 was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min-1 was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6. All others: 20 K min-1 was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6. Impact (operational) 4.6.4.2 Impact (operational) 4.6.4.2 No alarm or fault signal was given during the conditioning period or an additional 2 min. Conditioning: Impact energy: 1,9 ±0,1 J Hammer velocity: 1,5 ±0,13 ms-1 Number of impacts: 1 For resettable point heat detector Response time at 3 K min-1 was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min-1 was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 A1: 20 K min-1 was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms-2(=0,5 g _n) Number of axes: 3			For specimen with a mass ≤ 4,75 kg:
Response time at 3 K min¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 Impact (operational) 4.6.4.2 No alarm or fault signal was given during the conditioning period or an additional 2 min. Conditioning: Impact energy: 1,9 ±0,1 J Hammer velocity: 1,5 ±0,13 ms⁻¹ Number of impacts: 1 For resettable point heat detector Response time at 3 K min¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms⁻²(≈0,5 g₀) Number of axes: 3			Pulse duration: 6 ms Peak acceleration: 10X (100-20M) ms-2 (M is specimen mass in Kg) Number of directions: 6
To present the firm obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6			Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time
period or an additional 2 min. Conditioning: Impact energy: 1,9 ±0,1 J Hammer velocity: 1,5 ±0,13 ms ⁻¹ Number of impacts: 1 For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 Vibration, sinusoidal (operational) No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms ⁻² (≈0,5 g _n) Number of axes: 3			30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not
Impact energy: 1,9 ±0,1 J Hammer velocity: 1,5 ±0,13 ms ⁻¹ Number of impacts: 1 For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 Vibration, sinusoidal (operational) Vibration, sinusoidal (operational) 4.6.4.3 No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms ⁻² (≈0,5 g _n) Number of axes: 3	Impact (operational)	4.6.4.2	
Response time at 3 K min⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6. A1: 20 K min⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 Vibration, sinusoidal (operational) No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms⁻²(≈0,5 gn) Number of axes: 3			Impact energy: 1,9 ±0,1 J Hammer velocity: 1,5 ±0,13 ms ⁻¹
30 s compared with the time obtained in 4.3.6 All others: 20 K min⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6 Vibration, sinusoidal (operational) 4.6.4.3 No fault signal was given during the conditioning Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms⁻²(≈0,5 gn) Number of axes: 3			Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time
(operational) Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 5 ms ⁻² (≈0,5 g _n) Number of axes: 3			30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not
Acceleration amplitude: 5 ms ⁻² (≈0,5 g _n) Number of axes: 3		4.6.4.3	Conditioning:
Number of axes: 3			
			Sweep rate: 1 octave min ⁻¹

		Number of sweep cycles: 1 per axis
		Number of sweep cycles. I per axis
		For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6.
		A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6.
Vibration, sinusoidal (endurance)	4.6.4.4	No fault signal was given on reconnection attributable to the endurance conditioning.
		Conditioning: Frequency range: 10 to 150 Hz Acceleration amplitude: 10 ms ⁻² (≈1,0 g _n) Number of axes: 3 Sweep rate: 1 octave min ⁻¹ Number of sweep cycles: 20 per axis
		For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6.
		A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6
Electrical stability EMC immunity (operational)	4.6.5	Compliance in EN 50130-4:2011 and No fault signal was given during the conditioning.
		For resettable point heat detector Response time at 3 K min ⁻¹ was not less than 7 min 13 s and did not exceed 2 min 40 s compared with the time obtained in 4.3.6.
		A1: 20 K min ⁻¹ was not less than 30 s and did not exceed 30 s compared with the time obtained in 4.3.6 All others: 20 K min ⁻¹ was not less than 1 min and did not exceed 30 s compared with the time obtained in 4.3.6

Essential Characteristics	Standard EN54-17:2005	Performance
Performance under fire conditions	5.2 ⁽¹⁾	Pass
Operational reliability	4	Pass
Durability of operational reliability: temperature resistance	5.4, 5.5	Pass
Durability of operational reliability: vibration resistance	5.9 to 5.12	Pass
Durability of operational reliability: humidity resistance	5.6, 5.7	Pass
Durability of operational reliability: corrosion resistance	5.8	Pass
Durability of operational reliability: electrical stability	5.3,5.13	Pass

¹⁾ This is assuming that the effect of the fire is to cause a short circuit in the transmission path that is protected by these devices

8. Online Display Location

This document can be viewed online at www.apollo-fire.co.uk

The performance of the product identified above is in the conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No. 305/2011, under the sole responsibility of the manufacturer identified above

Signed for and on behalf of Apollo Fire Detectors Limited by:

Mr. David Robbins Technical Director Havant – 12.12.2022

(v7)

